Imagen
EL CUERPO HUMANO

EL CUERPO HUMANO
ARTICULACIONES
En anatomía, una articulación es el medio de contacto que hace a la unión entre dos huesos próximos.
La parte de la anatomía que se encarga del estudio de las articulaciones es la artrología.
Las funciones más importantes de las articulaciones son de constituir puntos de unión del esqueleto y producir movimientos mecánicos, proporcionándole elasticidad y plasticidad al cuerpo, además de ser lugares de crecimiento.

Para su estudio las articulaciones pueden clasificarse en dos grandes criterios:

• Por su estructura
(morfológicamente).

• Por su función (fisiológicamente).
Morfológicamente, los diferentes tipos de articulaciones se clasifican según el tejido que las une en varias categorías: fibrosas, cartilaginosas, sinoviales o diartrodias.

Fisiológicamente, el cuerpo humano tiene diversos tipos de articulaciones, como la sinartrosis (no móvil), sínfisis (con movimiento monoaxial) y diartrosis (mayor amplitud o complejidad de movimiento).

El cuerpo del adulto esta formado por 208 huesos aproximadamente, los cuales son rígidos y nos sirven para proteger a los órganos blandos del organismo.

Los huesos están formados en su mayor parte por calcio, y a su vez ayudan al equilibrio de éste (homeostasis).

Los huesos forman el esqueleto, el cual se divide en dos:

• Esqueleto axial: formado por cabeza, cuello y huesos del tronco (costillas, esternón, vértebras y el sacro).

• Esqueleto apendicular: formado por huesos de los miembros incluidos los que forman las cinturas pectorales y la pélvica.

Los huesos son afectados por diversas enfermedades, al igual que los músculos.

Los músculos son caracterizados por su capacidad para contraerse, por lo general en respuesta a un estímulo nervioso.

La unidad básica de todo músculo es la mió fibrilla, estructura filiforme muy pequeña formada por proteínas complejas.

Las articulaciones son zonas de unión entre los huesos o cartílagos del esqueleto y se pueden clasificar en base a diversos criterios, como su estructura o su función.
Clasificación estructural

Las articulaciones se pueden clasificar según el tejido del cual están formadas, como se muestra a continuación.

Sinoviales o móviles
Permiten realizar una amplia gama de movimientos.

Las sinoviales a su vez se dividen en subarticulaciones:

• Articulaciones en bisagra, gínglimo o troclear: Las articulaciones en bisagra son articulaciones sinoviales donde las superficies articulares están moldeadas de manera tal que solo permiten los movimientos en el eje perlateral (plano mediano o sagital)y solo pueden realizar dos tipos de movimientos flexión y extensión.

Por ejemplo, el codo, articulación húmero-cubital (húmero-ulnar), la rodilla, fémuro tibial y en los dedos, en la articulación entre las falanges proximal y medial y falange medial y distal.

• Articulaciones planas, deslizantes o artrodias: Son articulaciones sinoviales que se caracterizan porque sus superficies articulares son planos y sólo permiten movimientos de deslizamiento. Ej articulación acromioclavicular, articulaciones intercarpianas.

• Articulaciones en pivote o trocoides: Son articulaciones sinoviales donde las superficies articulares están moldeadas de forma parecida a un pivote y sólo permiten movimientos en el eje longitudinal y los únicos movimientos permitidos son los movimientos de rotación lateral y rotación medial.
Por ejemplo, la articulación del cuello, occípito-atlontoidea, del codo (radio-cubital o radio-ulnar proximal, de la base craneal o la existente entre el húmero y el cúbito. La pivotante del cuello permite voltear la cabeza y la del codo permite torcer el antebrazo.

• Articulaciones esféricas o enartrosis: tienen forma de bola y receptáculo y se caracterizan por el libre movimiento en cualquier dirección, como por ejemplo, la cadera y el hombro.

• Articulaciones en "silla de montar" o de "encaje recíproco": reciben su nombre, por que su forma es similar a la de una silla de montar. Por ejemplo, la que está entre el primer metacarpiano y el hueso del carpo (articulación carpometacarpiana del pulgar).

• Articulaciones cóndilo ideas o elipsoidales: se forma donde dos huesos se encuentran unidos de forma irregular y un hueso es cóncavo y otro convexo.

Hueso


Huesos humanos de la extremidad superior.
El hueso es un órgano firme, duro y resistente que forma parte del endoesqueleto de los vertebrados. Está compuesto principalmente por tejido óseo, un tipo especializado de tejido conectivo constituido por células, y componentes extracelulares calcificados. Los huesos también poseen cubiertas de tejido conectivo (periostio) y cartílago (carilla articular), vasos, nervios, y algunos contienen tejido hematopoyético y adiposo (médula ósea).
Los huesos poseen formas muy variadas y cumplen varias funciones. Con una estructura interna compleja pero muy funcional que determina su morfología, los huesos son plásticos y livianos aunque muy resistentes y duros.
El conjunto total y organizado de las piezas óseas (huesos) conforma el esqueleto o sistema esquelético. Cada pieza cumple una función en particular y de conjunto en relación con las piezas próximas a las que está articulada.
Los huesos en el ser humano, son órganos tan vitales como los músculos o el cerebro, y con una amplia capacidad de regeneración y reconstitución. Sin embargo, vulgarmente se tiene una visión del hueso como una estructura inerte, puesto que lo que generalmente queda a la vista son las piezas óseas —secas y libres de materia orgánica— de los esqueletos luego de la descomposición de los cadáveres.



Composición


Huesos del Esqueleto humano.
La constitución general del hueso es la del tejido óseo. Si bien no todos los huesos son iguales en tamaño y consistencia, en promedio, su composición química es de un 25% de agua, 45% de minerales como fosfato y carbonato de calcio y 30% de materia orgánica, principalmente colágeno y otras proteínas. Así, los componentes inorgánicos alcanzan aproximadamente 2/3 (65%) del peso óseo (y tan sólo un 35% es orgánico).

Los minerales de los huesos no son componentes inertes ni permanecen fijos sino que son constantemente intercambiados y reemplazados junto con los componentes orgánicos en un proceso que se conoce como remodelación ósea.

Su formación y mantenimiento está regulada por las hormonas y los alimentos ingeridos, que aportan vitaminas de vital importancia para su correcto funcionamiento.
Sin embargo, no todas las partes del cuerpo tienen este tipo de tejido, como el pene, orejas, senos y nariz.

Es un tejido muy consistente, resistente a los golpes y presiones pero también elástico, protege órganos vitales como el corazón, pulmones, cerebro, etc., asimismo permite el movimiento en partes del cuerpo para la realización de trabajo o actividades estableciendo el desplazamiento de la persona. Forma el aparato locomotor originando la estructura ósea o esqueleto.
Es también un depósito de almacenamiento de calcio y fósforo del cuerpo.

Los huesos se componen de un tejido vivo llamado tejido conectivo. Los huesos se clasifican como huesos cortos, largos, planos o irregulares. Ejemplo: Los huesos de las piernas y brazos son huesos largos; los de la cara y vertebras son huesos irregulares y los del craneo son huesos planos.

Tipos de tejido óseo


Los huesos poseen zonas con diferente densidad de tejido óseo que se diferencian macroscópicamente y microscópicamente en áreas de hueso compacto y áreas de hueso esponjoso, sin límites netos que las separen, se continúan una con la otra.

Hueso compacto

El hueso compacto forma la diáfisis (la porción alargada de los huesos largos que queda en el medio de las epifisis o porciones distales de los mismos). Aparecen como una masa sólida y continua cuya estructura solo se ve al microscopio óptico.
Su matriz ósea mineralizada esta depositada en laminillas, entre estas se ubican las lagunas con los osteocitos (cada laguna con el osteocito es llamada osteoplasto), desde cada una se irradian canalículos (conductillos muy delgados), ramificados que las comunican y permiten la nutrición de los osteocitos (recordemos que esto es importante ya que los osteocitos se encuentran rodeados de matriz mineralizada que no permite la difusión de nutrientes al osteocito). Las laminillas se disponen de 3 formas:

• Concéntricamente alrededor de un canal longitudinal vascular (llamado conducto de Havers), que contiene capilares, vénulas postcapilares y a veces arteriolas, formando estructuras cilíndricas llamadas osteonas o sistemas haversianos visibles al microscopio óptico.

• Entre las osteonas se disponen de forma angular formando los sistemas intersticiales separados de las osteonas por las llamadas líneas de cemento (capa de matriz ósea pobres en fibras colágeno que no son atravesados por estos canalículos, o sea que no poseen elementos vasculares; todo esto es observable al microscopio óptico).

• Por debajo del periostio sobre su superficie interna, y por debajo del endostio se ubican alrededor de la circunferencia del tallo de forma extendida las laminillas circunferenciales externas e internas (paralelas a la superficie).
Los canales haversianos comunican entre si con la superficie o la cavidad medular por canales transversales u oblicuos llamados canales perforantes o de Volkman que poseen vasos que vienen del periostio y del endostio más grandes que los de las osteonas que comunican entre ellas. Al microscopio óptico es difícil reconocerlos porque no se encuentran rodeados de láminas concéntricas.
Hueso esponjoso (reticulado)
El hueso esponjoso no contiene osteones, sino que las láminas intersticiales están de forma irregular formando unas placas llamadas trabéculas. Estas placas forman una estructura esponjosa dejando huecos llenos de la médula ósea roja. Dentro de las trabéculas están los osteocitos,los vasos sanguíneos penetran directamente en el hueso esponjoso y permiten el intercambio de nutrientes con los osteocitos. El hueso esponjoso es constituyente de las epifisis de los huesos largos y del interior de otros huesos.

Tejido óseo

Sustancia Fundamental. Compone 10% de la matriz orgánica, posee una concentración menor de glucosaminoglucanos (GAG), que el cartílago (ácido hialurónico, condroitín sulfato, queratán sulfato), es una matriz acidofila (en parte debido al colágeno). Posee proteínas exclusivas del hueso como la osteocalcina unida a la hidroxipatita. La osteopontina también unida a la hidroxipatita es similar a la fibronectina.
Colágeno. Es el 90% de la matriz orgánica, de tipo 1, posee muchos enlaces intermoleculares, insoluble en disolvente y mayor hidroxilación de las lisinas.
Sustancia inórganica. Fosfato cálcico presente en forma de cristales de hidroxiapatita que aparecen a intervalos regulados de 60 nm a 70 nm a lo largo de las fibras . También posee citrato, bicarbonato, floruro, magnesio e ion sodio. El hueso además posee afinidad por sustancias radioactivas que destruyen sus componentes.

Células del hueso

En el tejido óseo maduro y en desarrollo, se pueden diferenciar cuatro tipos de células: osteoprogenitoras, osteoblastos, osteocitos y osteoclastos. Los tres primeros tipos son estadios funcionales de un único tipo celular. El proceso reversible de cambio de una modalidad funcional a otra se conoce como modulación celular. Los osteoclastos tienen un origen hematopoyético compartido con el linaje mononuclear-fagocítico. El estadio mitótico de los tres primeros tipos celulares solo se observa en el estadio de célula osteoprogenitora.

• Células osteoprogenitoras u osteógenas. Provienen del mesénquima en el embrión. Poseen una forma de huso. Muestran retículo endoplásmico rugoso escaso, así como, Aparato de Golgi poco desarrollado pero se encuentran ribosomas libres en abundancia.
En el adulto, se encuentran en la capa celular interna del periostio y del endostio. Su diferenciación depende de las condiciones del medio: Si la tensión parcial de oxígeno es alta, se diferenciarán en osteoblastos; si la tensión parcial de oxígeno es baja, se desarrollarán células condrógenas.

• Osteoblastos. Formadores de matriz ósea. No pueden dividirse. Los osteoblastos 'deciden las acciones a efectuar en el hueso'. Surgen como diferenciación de las células osteoprogenitoras, bajo la influencia de la familia de la proteína morfogénica ósea (BMP) y del factor beta transformador de crecimiento TGF-β. Poseen elevado RER y un Aparato de Golgi bien desarrollado, también se observan numerosas vesículas. Se comunican entre ellas por uniones tipo GAP (nexo). Cuando quedan envueltas por la matriz ósea es cuando se transforman en un estadio no activo, el osteocito. Producen RANKL (receptor para la activación del factor nuclear K-B), osteonectina (para la mineralización ósea), osteopontina (para sellar la zona donde actúa el osteoclasto), osteocalcina (mineralización ósea), sialoproteína ósea (une osteoblastos y osteocitos a la matriz extracelular) y M-CSF (factor estimulante de colonias de macrófagos . Poseen receptores de hormonas, vitaminas y citocinas, como la hormona paratiroidea que induce al osteoblasto a secretar OPGL(ligando de osteoprotegerina) y factor estimulante de osteoclastos: éstos actúan en la diferenciación de preosteoclastos a osteoclastos y en su activación. Participan en la resorción ósea secretando sustancias que eliminan la osteoide (fina capa de matriz NO mineralizada), exponiendo la matriz ósea para el ataque de los osteoclastos.
Cuando los osteoblastos entran en un estado de inactividad se les llama células de recubrimiento óseo y pueden revertirlo para secretar citocinas o matriz ósea.

• Osteocitos. Se encuentran en hueso completamente formado ya que residen en lagunas en el interior de la matriz ósea mineralizada. Su forma se adapta al de la laguna y emiten prolongaciones digitiformes largas que se extienden por los canalículos de la matriz ósea y esto los pone en contacto con otros osteocitos. En esas zonas de contacto las membranas forman un nexo que permite el intercambio de iones, moléculas pequeñas y hormonas. Son similares a los osteoblastos, pero menos activos y por lo tanto su reticulo endoplasmático y aparato de Golgi esta menos desarrollado. Su función es seguir sintetizando los componentes necesarios para el mantenimiento de la matriz que los rodea. Están ampliamente relacionados con la mecanotransducción, proceso en el que reaccionan a la tensión ejercida liberando cAMP (monofosfato de adenosina cíclico), osteocalcina y somatomedinas lo que induce a la adición de osteoblastos para la remodelación del hueso. Se discute si se pueden transformar en osteoblastos activos.

• Osteoclastos. Tienen como función la resorción ósea. Por su origen hematopoyético, son entendidos como "macrófagos del hueso". Hasta hace poco, se creía que surgían de la fusión de varios monocitos, pero, de acuerdo a las nuevas investigaciones se ha descubierto que tienen su origen en el sistema de fagocitos mononucleares y surgen de la diferenciación (mediada por citocinas provenientes del osteoblasto) de macrófagos. Ubicados en las lagunas de Howship pueden llegar a ser células gigantes (hasta 150 micrometros de diámetro), con varios núcleos. Se encuentran polarizados con los núcleos cerca de su superficie lisa mientras que la superficie adyacente al hueso presenta prolongaciones muy apretadas como una hoja delimitadas por profundos pliegues (se le llama borde en cepillo o borde plegado). Abundantes mitocondrias en el borde plegado, también en esta región hay lisosomas y vacuolas. Alrededor del borde plegado la membrana se une al hueso por filamentos de actina (zona de sellado donde el osteoclasto lleva a cabo su función de reabsorción). En este sitio de sellado el osteoclasto bombea protones que baja el pH (acidifica el medio), para disolver el material óseo. El interior ácido del compartimiento favorece la liberación de hidrolasas ácidas lisosomales y proteasas, como gelatinasa y colagenasa (por el aparato de Golgi, reticulo endoplasmático y vesículas del borde), que eliminan las sales de calcio y degradan el colágeno y componentes orgánicos de la matriz ósea.
NERVIOS

Un nervio es un conjunto de fibras nerviosas o axones, asociadas en fascículos por medio de tejido conjuntivo.
Los nervios son manojos de prolongaciones nerviosas de sustancia blanca, en forma de cordones que hacen comunicar los centros nerviosos con todos los órganos del cuerpo.
Forman parte del sistema nervioso periférico.
Los nervios aferentes transportan señales sensoriales al cerebro, por ejemplo de la piel u otros órganos, mientras que los nervios eferentes conducen señales estimulantes desde el cerebro hacia los músculos y glándulas.


Nervios en la parte superior del brazo
Estas señales, a menudo llamadas impulsos nerviosos, son también conocidas como potenciales de acción: ondas eléctricas que viajan a grandes velocidades, las cuales nacen comúnmente en el cuerpo celular de una neurona y se propagan rápidamente por el axón hacia su extremo, donde por medio de la sinapsis, se transmite a otra neurona.

En los nervios se pueden distinguir distintos componentes:

• Epineuro: Es la capa más externa de un nervio y está constituida por células de tejido conectivo y fibras colágenas, en su mayoría dispuestas longitudinalmente. También pueden encontrarse algunas células adiposas.

• Perineuro: Es cada una de las capas concéntricas de tejido conjuntivo que envuelve cada uno de los fascículos más pequeños de un nervio.

• Endoneuro: Son unos finos fascículos de fibras colágenas dispuestas longitudinalmente, junto con algunos fibroblastos introducidos en los espacios situados entre las fibras nerviosas. El finísimo endoneuro está formado por delicadas fibras reticulares que rodean a cada fibra nerviosa.

• Axolema: También conocido como membrana axonal, envuelve el axón de la fibra nerviosa.

• Células de Schwann: células capaces de fabricar la mielina que envuelve los nervios (menos las fibras C, que no disponen de esta cubierta).
Conforme el nervio se va ramificando, las vainas de tejido conjuntivo se hacen más finas. En las ramas más pequeñas falta el epineuro, y el perineuro no puede distinguirse del endoneuro, ya que está reducido a una capa delgada fibrilar recubierta de células conjuntivas aplanadas que se parecen a las células endoteliales. Los vasos sanguíneos se localizan en el epineuro y en el perineuro y raras veces se encuentran en los acúmulos más densos de endoneuro.
Los nervios se clasifican según:

1) La clasificación de Erlanger y Gasser : Fibras de tipo A, con vaina de mielina y que se subdividen en tipo alfa (velocidad de conducción 70 a 120 m/s, diámetro 12 a 20 micras, responsables de la propiocepción), beta (Vel. de conducción 30-70 m/s, diámetro 5-12 micras, responsables del tacto y la presión), gamma (Vel. de conducción 15-30 m/s, diámetro de 3-6 micras, responsables de la transmisión motriz a los husos musculares ) y delta (Vel. de conducción 12-30 m/s, diámetro 2-5 micras, transmisión del dolor, el frío y parte del tacto)
Fibras B, mielinizadas, responsables de la conexión autónoma preganglionar (Vel. conducción 3-15 m/s, diámetro menor a tres micras)
Fibras C, no mielinizadas (sin vaina de mielina), que se ocupan de la transmisión del dolor, la temperatura, información de algunos mecanorreceptores y de las respuestas de los arcos reflejos (Vel. conducción 0.5 a2 m/s, diámetro de 0.4 a 1.2 micras)

2) Su origen :
Nervios Craneales : Son los que nacen del encéfalo o en el bulbo.
Nervios Raquídeos : Son los que nacen de la médula espinal.
Nervios del gran Simpático.

3) Su función :
Nervios sensitivos o centrípedos : Se encargan de conducir las excitaciones del exterior hacia los centros nerviosos. Son bastantes escasos. Generalmente las fibras nerviosas se hallan asociadas con fibras motoras (centrífugas). Como ejemplo de nervio sensitivo puro podemos citar el nervio de Wrisberg, que conduce al cerebro la sensibilidad de las gládulas salivales.
Nervios sensoriales : Se ubican dentro de los anteriores, pero se encargan únicamente de transmitir estímulos provenientes de los órganos de los sentidos.
Nervios motores o centrífugos : Son aquellos que llevan a los músculos o a las glándulas la órden de un movimiento o de una secreción impartida por un centro nervioso.
Nervios mixtos : Son aquellos que funcionan a la vez como sensitivos y motores. Se hallan constituidos por fibras que llevan las excitaciones exteriores hacia los centros nerviosos y órdenes de los músculos , de los centros hacia la periferia. Como ejemplo podemos citar el glosofarígeo que transmite al cerebro la excitación del gusto y produce al mismo tiempo la excitación de la lengua. Pertenecen a esta clase de nervios todos los nervios raquídeos y varios nervios craneanos.

Propiedades de los nervios

El nervio tiene dos propiedades esenciales que son la excitabilidad y la conductividad.

Excitabilidad

La excitabilidad es la propiedad que tiene el nervio de adquirir un movimiento vibratorio molecular bajo la acción de un excitante. El nervio puede ser excitado por un centro nervioso, por un excitante natural como la luz o por un excitante artificial como una descarga eléctrica. Los excitantes artificiales pueden ser de varias clases: El excitante es mecánico cuando se provoca la contracción de las patas de una rana pinchando el nervio crural. Será químico si se aplica un cristal de cloruro de sodio sobre el mismo nervio para conseguir el mismo efecto. Será térmico si se pone bruscamente el mismo nervio en contacto con un cuerpo caliente consiguiendo la misma contracción.El excitante más empleado en la fisiología es la electricidad porque es muy fácil regular la intensidad y la duración de su aplicación.

Conductibilidad

La conductibilidad es la propiedad que tiene el nervio de asegurar la propagación del movimiento vibratorio a lo largo del nervio en la forma ondulatoria a la manera que se propaga una onda en la superficie del agua. Esta propiedad permite a una dendrita transmitir a un centro nervioso la excitación que proviene de un pinchazo periférico, por ejemplo, y a un cilindro eje de llevar a otra neurona o a un músculo la excitación que proviene de un centro nervioso. Es de notar que las dendritas que emanan de un ganglio espinal poseen una envoltura de mielina, lo que puesto a considerar a los autores como cilindros-ejes. Para que se ejerza la conductibilidad es necesario que el nervio no haya sufrido ninguna degeneración y que en su trayecto no exista ninguna solución de continuidad. Un nervio puede perder la excitabilidad sin perder la conductibilidad; así la parte de un nervio sometida a la acción del gas carbónico, deja de ser excitable; pero sí se aplica la corriente eléctrica a la otra parte del nervio, la parte no excitable podrá conducir la excitación. Un nervio no se cansa al conducir el flujo nervioso; pero un centro nervioso puede fatigarse con un trabajo intelectual intenso. La conducción de un nervio sensitivo es centrípeda y la de un nervio motor es centrífuga. Los nervios mixtos participan en las dos cualidades.
Cavidades de tipo Black
Son unas cavidades odontológicas hechas por el Doctor Black, se basan en la obturación con amalgama de plata (empaste metálico) que por su no adhesión a las paredes cavitarias se tenía que efectuar una cavidad con paredes retentivas, esto comúnmente se conseguía mediante la orientación de las paredes vestibular y lingual convergentes hacia oclusal. En la actualidad se utiliza más el composite (empaste blanco) que se utiliza con adhesivo que nos permite no necesitar cavidades retentivas, esto se traduce en una cavidad mucho más conservadora y aunque no se sigan utilizando las cavidades con su forma para amalgama, la numeración de estas cavidades se sigue utilizando.

• Clase I - Caries en la cara oclusal y sólo en esa cara, normalmente están localizadas en molares pero también se encuentra en premolares, sus paredes vestibulares y linguales son retentivas mientras que las paredes mesiales y distales son divergentes conservando el esmalte en el punto de contacto

• Clase II - Caries en interproximal, entre los dientes, éstas son típicas en molares y premolares, su diagnóstico ha de ser radiológico además de visual ya que al estar entre los dientes siempre hay que comprobar con una radiografía, se trata de una caja proximal entre los dientes quitando el punto de contacto, con paredes lingual y vestibular convergentes hacia oclusal. Además, nos podemos encontrar con cavidades clase II que tienen caries por oclusal, entonces la cavidad será con la caja proximal unida a una cavidad Clase I

• Clase III - Caries en interproximal del sector anterior y sin afectación del borde incisal, estas caries tienen la dificultad de la estética ya que son cavidades que se ven al sonreir, por eso lo que se suele intentar es hacer la cavidad por lingual y quitar lo mínimo en la cara vestibular, la cavidad con amalgama necesita retención y se hacía la cavidad y al lado, una pequeña cavidad muy fina y muy extensa para proporcionar estabilidad a la obturación, en la actualidad se adhiere al esmalte y para ayudarlo se bisela el esmalte

• Clase IV - Caries en interproximal del sector anterior y con afectación del borde incisal, esto ya son caries que se ven por ambos lados del diente y que no se puede mantener la parte vestibular del diente, de hecho se quita la zona proximal del diente y se obtura, otra vez con bisel en el esmalte para el composite

• Clase V - Caries en las caras libres dentales, es decir caries cerca, encima o debajo de la encía, son cavidades que tiene las paredes oclusales y apicales convergentes hacia el exterior, es decir son retentivas, en la amalgama de plata es como se consigue la adhesión y en composites mediante adhesivo pero en esta cavidad si la hacemos expulsiva las fuerzas oclusales al morder nos van a ir despegando el composite por lo tanto esta es la única cavidad que necesariamente va a ser con paredes retentivas sin depender del material restaurado. Estas cavidades no se pueden tratar hasta que se tenga un buen acceso, lo digo por la encía, que debemos apartar un poco con hilo retractor o con cirugía según sea necesario.

CORAZON

En anatomía, el corazón (de un derivado popular del latín cor, cordis) es el órgano principal del sistema circulatorio. Es un órgano muscular, una bomba aspirante e impelente, que aspira desde las aurículas o entradas de la sangre que circula por las venas, y la impulsa desde los ventrículos hacia las arterias. Entre estos dos se encuentra una válvula que hace que la dirección de la circulación sea la adecuada. El corazón es un órgano musculoso y cónico situado en la cavidad torácica, que funciona como una bomba, impulsando la sangre a todo el cuerpo. Un poco más grande que un puño, está dividido en cuatro cavidades: dos superiores, llamadas aurículas, y dos inferiores, llamadas ventrículos. El corazón impulsa la sangre mediante los movimientos de sístole y diástole.

• Sístole es una contracción que usa el corazón para expulsar la sangre, ya sea de una aurícula o de un ventrículo.

• Diástole es una relajación que usa el corazón para relajar los ventrículos o las aurículas y recibir la sangre.
El término cardíaco hace referencia al corazón en idioma griego kardia.
El corazón es un órgano mutuo hueco cuya función es de bombear la sangre a través de los vasos sanguíneos del organismo. Se sitúa en la parte inferior del mediastino medio en donde está rodeado por una membrana fibrosa gruesa llamada pericardio. Esta envuelto laxamente por el saco pericárdico que es un saco seroso de doble pared que encierra al corazón. El pericardio esta formado por un capa Parietal y una capa visceral. Rodeando a la capa de pericardio parietal está la fibrosa, formado por tejido conectivo y adiposo. La capa serosa del pericardio interior secreta líquido pericárdico que lubrica la superficie del corazón, para aislarlo y evitar la fricción mecánica que sufre durante la contracción. Las capas fibrosas externas lo protegen y separan.
El corazón se compone de tres tipos de músculo cardíaco principalmente:

• Músculo auricular.
• Músculo ventricular.
• Fibras musculares excitadoras y conductoras especializadas.

Estos se pueden agrupar en dos grupos, músculos de la contracción y músculos de la excitación. A los músculos de la contracción se les encuentran: músculo auricular y músculo ventricular; a los músculos de la excitación se encuentra: fibras musculares excitadoras y conductoras especializadas.

Localización anatómica

El corazón se localiza en la parte inferior del mediastino medio, entre el segundo y quinto espacio intercostal, izquierdo. El corazón está situado de forma oblicua: aproximadamente dos tercios a la izquierda del plano medio y un tercio a la derecha. El corazón tiene forma de una pirámide inclinada con el vértice en el “suelo” en sentido anterior izquierdo; la base, opuesta a la punta, en sentido posterior y 3 lados: la cara diafragmática, sobre la que descansa la pirámide, la cara esternocostal, anterior y la cara pulmonar hacia la izquierda.

Estructura del corazón

De dentro a fuera el corazón presenta las siguientes capas:

• El endocardio, una membrana serosa de endotelio y tejido conectivo de revestimiento interno, con la cual entra en contacto la sangre. Incluye fibras elásticas y de colágeno, vasos sanguíneos y fibras musculares especializadas, las cuales se denominan Fibras de Purkinje. En su estructura encontramos las trabéculas carnosas, que dan resistencia para aumentar la contracción del corazón.

• El miocardio, el músculo cardíaco propiamente dicho; encargado de impulsar la sangre por el cuerpo mediante su contracción. Encontramos también en esta capa tejido conectivo, capilares sanguíneos, capilares linfáticos y fibras nerviosas.

• El epicardio, es una capa fina serosa mesotelial que envuelve al corazón llevando consigo capilares y fibras nerviosas. Esta capa se considera parte del pericardio seroso.

El corazón se divide en cuatro cavidades, dos superiores o atrios y dos inferiores o ventrículos. Los atios reciben la sangre del sistema venoso, pasan a los ventrículos y desde ahí salen a la circulación arterial.
El atrio y el ventrículo derecho forman lo que clásicamente se denomina el corazón derecho. Recibe la sangre que proviene de todo el cuerpo, que desemboca en el atrio derecho a través de las venas cavas superior e inferior. Esta sangre, baja en oxígeno, llega al ventrículo derecho, desde donde es enviada a la circulación pulmonar por la arteria pulmonar. Dado que la resistencia de la circulación pulmonar es menor que la sistémica, la fuerza que el ventrículo debe realizar es menor, razón por la cual su tamaño muscular es considerablemente menor al del ventrículo izquierdo.
El atrio izquierdo y el ventrículo izquierdo forman el llamado corazón izquierdo. Recibe la sangre de la circulación pulmonar, que desemboca a través de las cuatro venas pulmonares a la porción superior de la aurícula izquierda. Esta sangre está oxigenada y proviene de los pulmones. El ventrículo izquierdo la envía por la arteria aorta para distribuirla por todo el organismo.
El tejido que separa el corazón derecho del izquierdo se denomina septo o tabique. Funcionalmente, se divide en dos partes no separadas: la superior o tabique interatrial, y la inferior o tabique interventricular. Este último es especialmente importante, ya que por él discurre el fascículo de His, que permite llevar el impulso a las partes más bajas del corazón.

Válvulas cardíacas

Las válvulas cardíacas son las estructuras que separan unas cavidades de otras, evitando que exista reflujo retrógrado. Están situadas en torno a los orificios atrioventriculares (o aurículo-ventriculares) y entre los ventrículos y las arterias de salida. Son las siguientes cuatro:
• La válvula tricúspide, que separa la aurícula derecha del ventrículo derecho.
• La válvula pulmonar, que separa el ventrículo derecho de la arteria pulmonar.
• La válvula mitral o bicúspide, que separa la aurícula izquierda del ventrículo izquierdo.
• La válvula aórtica, que separa el ventrículo izquierdo de la arteria aorta.
Fisiología del músculo cardiaco

Ciclo cardiaco

Cada latido del corazón lleva consigo una secuencia de eventos que en conjunto forman el ciclo cardíaco, constando principalmente de tres etapas: sístole atrial, sístole ventrícular y diástole. El ciclo cardíaco hace que el corazón alterne entre una contracción y una relajación aproximadamente 72 veces por minuto, es decir el ciclo cardíaco dura unos 0,8 segundos.Para que exista paso de sangre de una cavidad a otra del corazón, la presión de la cavidad impulsora ha de ser siempre mayor que la de la cavidad receptora.

• Durante la sístole auricular, las aurículas se contraen y proyectan la sangre hacia los ventrículos, si bien este paso de sangre es esencialmente pasivo, por lo que la contracción auricular participa poco en condiciones de reposo, sí que cobra importancia durante el ejercicio físico. Una vez que la sangre ha sido expulsada de las aurículas, las válvulas atrioventriculares entre las aurículas y los ventrículos se cierran. Esto evita el reflujo de sangre hacia las aurículas. El cierre de estas válvulas produce el sonido familiar del latido del corazón. Dura aproximadamente 0,1 s. En este momento el volumen ventricular es máximo, denominándose volumen de fin de diástole o telediastólico.

• La sístole ventricular implica la contracción de los ventrículos expulsando la sangre hacia el aparato circulatorio.En esta fase se contrae primeramente la pared del ventrículo sin que halla paso de sangre porque hay que vencer la elevada presión de la aorta o de la arteria pulmonar; cuando esto se produzca tendrá lugar la eyección, la cual ocurre en dos fases, una rápida y otra lenta. Una vez que la sangre es expulsada, las dos válvulas sigmoideas, la válvula pulmonar en la derecha y la válvula aórtica en la izquierda, se cierran. Dura aprox. 0,3 s.Hay que decir que los ventrículos nunca se vacían del todo, quedando siempre sangre que forma el volumen de fin de sístolo o telesistólico.

• Por último la diástole es la relajación de todas las partes del corazón para permitir la llegada de nueva sangre. Dura aprox. 0,4 s. [Corrección: En las imágenes adjuntas, ambas corresponden a una contracción del corazón, por lo tanto a Sístoles, No Diastole.

En el proceso se pueden escuchar dos ruidos:
• Primer ruido cardiaco: cierre de válvulas tricuspide y mitral.
• Segundo ruido cardiaco:cierre de válvulas sigmoideas (válvulas pulmonares y aortas).

Ambos ruidos se producen debido al cierre súbito de las válvulas, sin embargo no es el cierre lo que produce el ruido, sino la reverberación de la sangre adyacente y la vibración de las paredes del corazón y vasos cercanos. La propagación de esta vibración da como resultado la capacidad para auscultar dichos ruidos.

Este movimiento se produce unas 70 a 80 veces por minuto.

La expulsión rítmica de la sangre provoca el pulso que se puede palpar en las arterias radiales, carótidas, femorales, etc.
Si se observa el tiempo de contracción y de relajación se verá que las atrios están en reposo aprox. 0,7 s y los ventrículos unos 0,5 s. Eso quiere decir que el corazón pasa más tiempo en reposo que en trabajo.
En la fisiología del corazón, cabe destacar, que sus células se despolarizan por sí mismas dando lugar a un potencial de acción, que resulta en una contracción del músculo cardíaco. Por otra parte, las células del musculo cardíaco se "comunican" de manera que el potencial de acción se propaga por todas ellas, de tal manera que ocurre la contracción del corazón. El músculo del corazón jamás se tetaniza (los cardiomiocitos tienen alta refractariedad, es por eso que no hay tétanos)
El nodo sinusal tiene actividad marcapasos, esto significa que genera ondas lentas en el resto del tejido sinusal.
Imagen
EL CEREBRO
El cerebro es una parte del encéfalo de los animales vertebrados, siendo un componente del sistema nervioso rico en neuronas con funciones especializadas.
En otros invertebrados, se denomina también al principal ganglio o conjunto de ganglios
La existencia de primordios cerebrales se ubica al menos en la llamada "Explosión cámbrica", cuando se observan moluscos y gusanos que además de un sistema nervioso vago periférico y difuso distribuido en una simetría radial poseen un, o un conjunto, de ganglios neurales que rigen varias actividades del organismo de estos animales primitivos; en los vermes, peripatos, artrópodos y procordados se observa el inicio de la "cerebración" esto es, el inicio de la organización de un conjunto de ganglios nerviosos rectores que sirven de interfase coordinadora entre el interior del cuerpo del animal y el exterior del mismo.

La ubicación cefálica de ningún modo ha sido al azar: en los primitivos vermes, artrópodos y procordados con cuerpo longilíneo y de simetría bilateral (la misma que mantiene el Homo sapiens) el sistema nervioso central se ubica en la parte anterior o delantera ya que es (por ejemplo en un gusano) la primera parte en entrar en un intenso contacto con el medioambiente, del mismo modo histológicamente se puede observar un nexo inicial (embrional) entre las células dérmicas y las nerviosas del cérebro ya que las neuronas serían, mutación y evolución mediante, una gran especialización de células dérmicas. Al tomar postura erguida, animales como los primates, pasan a tener el sistema nervioso central (y su parte principal: el cerebro) ya no en la parte delantera de su cuerpo sino en su parte superior (en ambos casos: su cabeza). También es explicable filogenéticamente la corticalización, esto es la aparición y desarrollo del córtex cerebral a partir del sistema límbico y su progresivo desarrollo en áreas de arquitectura neuronal cada vez más complejas.
Este desarrollo filogénetico se puede percibir ontogenéticamente en cada embrión de animal cordado al observar la llamada "recapitulación de Häckel". La estructura precursora del sistema nervioso es el tubo neural, una estructura que aparece en la parte externa de los embriones en fase gástrula. Este tubo, a lo largo de la embriogénesis, sufre una serie de modificaciones que dan lugar a la estructura madura. El primero de ellos es la aparición de tres expansiones, tres vesículas: el encéfalo anterior, el encéfalo medio y el encéfalo posterior; su cavidad, llena de líquido, es precursora de los ventrículos cerebrales. Después, estas tres vesículas dan lugar a cinco que, en su ganancia de complejidad, sufren una serie de plegamientos que hacen que la estructura no sea ya lineal
Características generales
El cerebro humano pesa aproximadamente 1300-1600 gramos. Su superficie (la llamada corteza cerebral), si estuviera extendida, cubriría una superficie de 1800-2300 centímetros cuadrados. Se estima que en el interior de la corteza cerebral hay unos 22.000 millones de neuronas, aunque hay estudios que llegan a reducir esa cifra a los 10.000 millones y otros a ampliarla hasta los 100.000 millones.

Por otra parte, el cerebro es el único órgano completamente protegido por una bóveda ósea y alojado en la cavidad craneal.

Regiones

Corte sagital de un cerebro humano: posición dentro del cráneo.

En el cerebro de los cordados se identifican las siguientes regiones:

Rombencéfalo
Mielencéfalo
Médula oblonga
Metencéfalo
Puente de Varolio
Cerebelo
Mesencéfalo
Téctum
Tegumento mesencefálico
crus cerebri
Prosencéfalo
Diencéfalo
epitálamo
glándula pineal
Tálamo
Hipotálamo
Glándula pituitaria
Telencéfalo
arquipalio
ganglio basal
núcleo caudado
sustancia negra
cuerpo estriado
amígdala cerebral
Paleopalio
corteza piriforme
bulbo olfatorio
amígdala cerebral
neopalio
Corteza cerebral
Lóbulo frontal
Lóbulo temporal
Lóbulo parietal
Lóbulo occipital
ínsula
corteza cingulada

El músculo cardíaco es miogénico. Esto quiere decir que, a diferencia del músculo esquelético, que necesita de un estímulo consciente o reflejo, el músculo cardiaco se excita a sí mismo.
Las contracciones rítmicas se producen espontáneamente, así como su frecuencia puede ser afectada por las influencias nerviosas u hormonales, como el ejercicio físico o la percepción de un peligro.

La estimulación del corazón está coordinada por el sistema nervioso autónomo, tanto por parte del sistema nervioso simpático (aumentando el ritmo y fuerza de contracción) como del parasimpático (reduce el ritmo y fuerza cardiacos).

La secuencia de las contracciones está producida por la despolarización (inversión de la polaridad eléctrica de la membrana debido al paso de iones activos a través de ella) del nodo sinusal o nodo de Keith-Flack (nodus sinuatrialis), situado en la pared superior de la aurícula derecha.
La corriente eléctrica producida, del orden del microvoltio, se transmite a lo largo de las aurículas y pasa a los ventrículos por el nodo auriculoventricular (nodo AV) situado en la unión entre los dos ventrículos, formado por fibras especializadas. El nodo AV sirve para filtrar la actividad demasiado rápida de las aurículas. Del nodo AV se transmite la corriente al fascículo de His, que la distribuye a los dos ventrículos, terminando como red de Purkinje.

Este sistema de conducción eléctrico explica la regularidad del ritmo cardíaco y asegura la coordinación de las contracciones auriculoventriculares. Esta actividad eléctrica puede ser analizada con electrodos situados en la superficie de la piel, llamándose a esta prueba electrocardiograma o EKG.

• Batmotropismo: el corazón puede ser estimulado, manteniendo un umbral.

• Inotropismo: el corazón se contrae bajo ciertos estímulos. El sistema nervioso simpático tiene un efecto inotrópico positivo, por lo tanto aumenta la contractilidad del corazón.

• Cronotropismo: se refiere a la pendiente del potencial de acción. SN Simpático aumenta la pendiente, por lo tanto produce taquicardia. En cambio el SN Parasimpático la disminuye.

• Dromotropismo: es la velocidad de conducción de los impulsos cardíacos mediante el sistema excito-conductor. SN Simpático tiene un efecto dromotrópico positivo, por lo tanto hace aumentar la velocidad de conducción. Sn parasimpático es de efecto contrario.

• Lusitropismo: es la relajación del corazón bajo ciertos estímulos.

• el corazón bombea solamente el 70 porciento de la sangre que en se cuentra en las auriculas y en los ventriculos

• La presión que crea el corazón humano al latir, es suficiente para lanzar la sangre a 10 metros de altura.[cita requerida]

• Existen sensores en nuestro sistema circulatorio que se encargan de "sentir (o recibir las sensaciones de)" las presiones, es por esto que se llaman barorreceptores. En el corazón tenemos barorreceptores de presión baja, localizados en las paredes del atrio y en vasos pulmonares, estos son sensibles a la distensión de las paredes. Por ejemplo si disminuye el llenado normal de los vasos pulmonares y atrios entonces habrá una señal (que llega al tronco encefálico) que le avise al sistema nervioso que debe aumentar la actividad simpática y la secreción de Hormona antidiurética para así compensar esa "baja de volumen" que había. También hay barorreceptores en el cayado aórtico y en el seno carotídeo que, según se produzca una disminución o un aumento de la presión sanguínea se estimularán el sistema nervioso simpático o parasimpático respectivamente para así restablecer el cambio de la presión (retroalimentación negativa).

• Durante el desarrollo intrauterino del ser humano, estructuras que cumplen la función del corazón aparecen entre las semanas 4 y 5 pero, al no disponer el embrión de un sistema nervioso en funcionamiento, este funciona de manera automática, y sus latidos tienen una frecuencia de 160 lat/min. Esta frecuencia aumenta hasta la semana 8 a 10. En el último trimestre, cuando el sistema nervioso ya es funcional, la frecuencia disminuye. En esta etapa se produce un control parasimpático del ritmo cardíaco.
ARTERIA

En anatomía una arteria es cada uno de los vasos que llevan la sangre desde el corazón a las demás partes del cuerpo. Etimología: Proviene del griego artería, "tubo, conducción (que enlaza)" + ter/tes/tr (gr.) [que hace] + -ia (gr.)

Las arterias son conductos membranosos, elásticos, con ramificaciones divergentes, encargados de distribuir por todo el organismo la sangre expulsada en cada sístole de las cavidades ventriculares.
Cada vaso arterial consta de tres capas concéntricas:

1. Externa o adventicia: de tejido conjuntivo

2. Media: compuesta por fibras musculares lisas y fibras elásticas

3. Interna o íntima: constituida por el endotelio y una capa conjuntiva subendotelial.

La arteria pulmonar es la única arteria que, al igual que las venas, transporta sangre carboxigenada. Es un vaso sanguíneo arterial por su origen (ventrículo derecho), por su modo de distribución, el grosor y elastidad de la pared y otras características de su estructura. La excepción radica en la sangre venosa que transporta hacia los pulmones, donde llega para ser oxigenada y reusada de nuevo cuando llega al corazón.

Su origen se encuentra en la base del corazón (infundíbulo del ventrículo derecho), desde donde se dirige a la izquierda arriba y atrás, en una longitud de 5 centímetros, dividiéndose en 2 ramas terminales: la arteria pulmonar derecha y la arteria pulmonar izquierda, que se dirigen cada una al pulmón del mismo nombre.

Sistema de la arteria aorta

Trayecto

La arteria aorta se dirige oblicuamente arriba, adelante y a la izquierda, en una longitud de 5 centímetros. Después se inclina hacia la tercera vértebra dorsal, formando el cayado de la aorta. Luego se hace vertebral, corriendo primero a lo largo de la parte izquierda de la columna vertebral, hasta la octava vértebra dorsal, y luego a lo largo de la línea media. Por último, atraviesa el diafragma y termina a nivel de la cuarta vértebra lumbar.
Ramas que nacen del cayado de la aorta
Da ramas que irrigan la cabeza, el cuello y las extremidades superiores

1- Tronco braquiocefálico arterial, que se divide en 2 ramas terminales: la arteria carótida primitiva derecha y la arteria subclavia derecha.

2- Arteria carótida común izquierda, destinada como la derecha a la extremidad cefálica. Aportan sangre oxigenada a la cabeza

3- Arteria subclavia izquierda
Ramas que nacen de la porción torácica de la aorta

1- Arterias bronquiales. Son 3 para el pulmón derecho y 2 para el izquierdo, y están destinadas a la nutrición del parénquima pulmonar.

2- Arterias esofágicas medias. Son 5 o 6 y se distribuyen por la porción torácica del esófago

3- Arterias mediastínicas posteriores. Son ramos muy delgados que se distribuyen por los órganos del mediastino posterior (pleura, pericardio, ganglios).

4- Arterias intercostales aórticas
Ramas que nacen de la porción abdominal de la aorta
1- Arterias diafragmáticas inferiores (arterias frénicas inferiores)
2- Arterias lumbares
3- Tronco celíaco, que da 3 ramas: arteria hepática, arteria esplénica y arteria coronaria estomáquica o gástrica izquierda.
4- Arteria mesentérica superior
5- Arterias capsulares medias (arterias suprarrenales medias)
6- Arterias renales
7- Arterias genitales. Son las arterias espermáticas en el hombre y las arterias uteroováricas en la mujer. (arterias testiculares en el hombre y arterias ováricas en la mujer)
8- Arteria mesentérica inferior
(entre paréntesis se han señalado las mismas arterias, según la terminología anatómica internacional adaptada al español).

Ramas terminales de la aorta

1- Arteria sacra media
2- Arterias ilíacas primitivas

VENA

En anatomía una vena es un vaso sanguíneo que conduce la sangre desde los capilares al corazón y lleva, generalmente, dióxido de carbono y desechos de los organismos, aunque hay venas que llevan sangre oxigenada. La vena pulmonar, por ejemplo, lleva sangre oxigenada desde los pulmones hasta el corazón, para que éste la bombee al resto del cuerpo a través de la arteria aorta. El cuerpo humano tiene más venas que arterias y su localización exacta es mucho más variable de persona a persona que el de las arterias. las venas son muy diferentes a las arterias Se encuentran por bajo de los pies.

Las venas están formadas por tres capas:
• Interna o endotelial.
• Media o muscular.
• Externa o adventicia.
Las venas tienen una pared más delgada que la de las arterias, debido al menor espesor de la capa muscular, pero tiene un diámetro mayor que ellas porque su pared es más distensible, con más capacidad de acumular sangre. En el interior de las venas existen unas valvas que forman las válvulas semilunares que impiden el retroceso de la sangre y favoreciendo el sentido de la sangre hacia el corazón.
División de los sistemas venosos
Las venas adjuntan tres sistemas :el sistema pulmonar, el sistema general y por ultimo el sistema de la vena porta.
• Venas del sistema general: Por las venas de la circulación sistémica o general circula la sangre pobre en oxígeno desde los capilares o microcirculación sanguínea de los tejidos a la parte derecha del corazón. Las venas de la circulación sistémica también poseen unas válvulas, llamadas válvulas semilunares que impiden el retorno de la sangre hacia los capilares.
• Sistema pulmonar: Por las venas de la circulación pulmonar circula la sangre oxigenada en los pulmones hacia la parte izquierda del corazón.
• Sistema porta: Por las venas de los sistemas porta circula sangre de un sistema capilar a otro sistema capilar. Existen dos sistemas porta en el cuerpo humano:
o Sistema porta hepático: Las venas originadas en los capilares del tracto digestivo desde el estómago hasta el recto que transportan los productos de la digestión, se transforman de nuevo en capilares en los sinusoides hepáticos del hígado, para formar de nuevas venas que desembocan en la circulación sistémica.
o Sistema porta hipofisario: La arteria hipofisaria superior procedente de la carótida interna, se ramifica en una primera red de capilares situados en la eminencia media. De estos capilares se forman las venas hipofisarias que descienden por el tallo hipofisario y originan una segunda red de capilares en la adenohipófisis que drenan en la vena yugular interna.
Nombres de las principales venas
Los nombres de las principales venas son:
• Venas pulmonares.
• Vena porta.
• Vena supercavia
• Vena renal
• Vena femoral.
• Vena yugular.
• Venas Coronarias.

Las venas son el acceso más rápido para la extracción de una muestra de sangre para su análisis. También son la vía más directa para la administración de medicamentos, fluidos y nutrición, llamándose a esta vía intravenosa o endovenosa.

 
comentarios
Para más información